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Abstract

This work is concerned with the control problem

of a multi-robot system handling a payload with un-

known mass properties. Force constraints at the grasp
points are considered. Robust control schemes are pro-

posed that cope with the model uncertainty and achieve

asymptotic path tracking. To deal with the force con-
straints, a strategy for optimally sharing the task is

suggested. This strategy basically consists of two steps.

The first detects the robots that need help and the second

arranges that help. It is shown that the overall system

is not only robust to uncertain payload parameters, but

also satisfies the force constraints ......

Keywords: Multi-robot systems, unknown payloads,
robust control, adaptive control, force constraints.

1 INTRODUCTION

The range of tasks that require anthropomorphic

manipulation motivates the use of multi-robot systems.

In particular, tasks that require manipulation of a sin-

gle heavy load or a cumbersome object could exceed the

force and work envelope limits of a single arm. One of
the major issues involved in a multi-robot system is to

coordinate all the robots so that they perform a given

task in a cooperative manner. More specifically, the

control problem includes dynamic behavior modeling,

trajectory tracking control, internal force control and

task distribution among the robots.

Although still in its early stages of development,

there has been significant progress in this area, and a
great deal of work has been reported in recent years. In

the area of modeling, the work by Luh and Zheng [14] is

among the earliest research dealing with the kinematic

and dynamic constraints imposed on such a system.

This was also studied for a two-arm system by Suh and

Shin [28].

The dynamics model of a multi-robot system is re-

quired for the development of control algorithms. As

has been reported in the literature, the dynamics model

of a multi-robot system exhibits its own inherent prop-

erties, ttayati [9] investigated a dynamic model for a
closed-chain system. This issue, together with thd con-

trol problem, has also been studied by Tarn, Bejczy and

Yun [29], Furuta, et al [8], (3zgiiner, Yurkovich and AI-

Abbass [18], Yun [35] and Li, Hsu and Sastry [13].

The work by Cole, Hause and Sastry [6] considered

the case of a multifingered hand in rolling contact with
an object and both the kinematics and control issues

were investigated. Alford and Belyeu [2] studied
two-arm system and proposed a leader-follower control

strategy, which was generalized to a multi-arm system

by Arimoto, Miyazaki and Kawamura [4]. A position

and force control scheme for a multi-robot system was

proposed by Nakamura, Nagai and Yoshikawa [16].
Issues related to force distribution in closed kine-

matic chains were discussed by Orin and Oh [17]. A1-

hefts and Soloway [1] suggested a control law which

distributes force among the manipulators by using a

weighting function. In the work by Salisbury and Craig

[21], Yoshikawa and Nagai [34] and Nakamura, Nagai

and Yoshikawa [16], the force exerted on the object is

distributed based on an object-related criterion. Zheng

and Luh [36] developed load distribution schemes for

two-manipulator systems which were based on minimiz-
ing either the system energy or the force imparted to

the object. In those schemes, the manipulator's dynam-

ics are explicitly considered. Anderson and Pittelkau

[3] proposed a load sharing force controller that ap-

portions control forces between two manipulators. An
adaptive algorithm that uses a joint torque-based cri-

terion to determine the optimum load sharing was sug-

gested in that work.

By considering the effect of loading on the dynam-



_.-_-_

lld

• 1

=

r

tg_

, r__:

N

M

=:-=

ics constraints, Walker, Marcus and Freeman [32] pre-
sented an approach for load distribution. The reac-

tion forces created by a given arm's input loading was
considered in Unseren and Koivo [30]. Carignan and

Akin [5] derived the torques for two planar cooper-

ating arms. A coordinated control law for a multi-

manipulator system performing parts-matching tasks

was proposed by Hsu [10] and a decentralized structure

for the control strategy was suggested. In a recent work

by Walker, Freeman and Marcus [31], the motion and

internal loads induced on an object grasped by two or

more robotic manipulators were analyzed and the load

distribution problem was formulated by using the non-

squeezing pseudoinverse.

In the context of controller design, two approaches
are generally used. In the first, the problem is simplified

by implicitly assuming that the payload information is

known exactly and can be precisely modelled. In the

second approach uncertain payload effects are compen-

sated by the use of a wrist force sensor (see references
[3], [9], [19] and [29]). In general precise information

about the payload is not available for many applica-

tions, and the force sensor method depends heavily on

the precision of the force measurement, as has been

shown in [3]. These facts motivate the study of adap-

tive control schemes for multi-robot systems.

Mo and Bayoumi [15] proposed an adaptive con-
trol method for a multi-arm robotic system by using

a method similar to that in Craig, Itsu and Sastry [7].

Walker, Kim and Dionise [33] reported an adaptive con-

trol strategy that accounts for payload effects. Hu and

Goldenberg [11] also investigated the case of uncertain
parameters in a multi-arm system. However, in most

of these strategies the force constraint problem is not
considered.

In a recent work by Song and Anderson [23], a new
adaptive control law with a colleague-like strategy for

task distribution was reported in which the force con-

straints are explicitly considered. As an extension of

and a complement to that work, this paper is devoted

to the robust controller design for multi-robot systems

with both unknown payload dynamics and force con-
straints. First, following a modeling procedure similar

to that in [6], a combined dynamic model which ac-

counts for payload effects is derived. This model is

slightly different in structure from the one obtained in

[6] as a result of considering the forces and the moments

exerted on the object. New robust control algorithms
that explicitly deal with unknown payload parameters

are developed. By using the generalized energy accu-

mulation method, it is shown that the control strategy

guarantees asymptotically stable path tracking of the

payload's mass center. A strategy for task distribution

is suggested which considers the dual contributions of
the control torques. That is, it not only produces the

control torques required for path tracking, but also sat-

isfies the force constriants, a necessary condition for fine

manipulation of the workpiece.
The main uncertainty in practice is due to the pay-

load, not the robots themselves. Thus the attention in

this paper is focused on the uncertain payload -- the

most significant effect on system performance (Leahy
[12]). However, the technique presented herein can be

readily extended to the case where uncertain parame-

ters exist in both the robot and payload models.

The remainder of this paper is organized as follows.
Section 2 presents a derivation of the combined multi-

robot/payload dynamics model based on the funda-
mental equations presented in the first part of the sec-

tion. The structural properties of this model are inves-

tigated, and are utilized in Section 3 to develop robust

control strategies. Tracking stability is analyzed in Sec-
tion 4, and a new robust control which does not rely

on norm bounds is proposed in Section 5. Task distri-

bution among the robots is discussed in Section 6 and
a strategy for optimal sharing of the task is prop'osed.

The application of the strategy is illustrated in Section

7 by means of a three-robot example. Comments and

conclusions are given in Section 8.

2 MODELING

A dynamic model for a multi-robot system handling

a workpiece was developed in [23]. However, due to lim-

ited space, many important details were omitted. For

completeness, the modeling process of [23] is expanded

in the following.

2.1 Kinematics

The multi-robot system illustrated in Figure 1 rep-

resents several robots handling a common payload. For

simplicity, it is assumed that each robot has six degrees-

of-freedom. The first joint of each robot is attached to

a fixed base and the ith robot is grasping the payload

at the contact point Ci. Rigid grasping is assumed
such that there is no relative motion at the contact

points and there is perfect force transmission betwoo,
the robots and the payload. Also each contact point is

fixed and has a known location on the payload. Eact_

robot applies a force f_. and a moment n,, through

the contact point Ci to the payload. There are totally

d (d > 2) robots handling the payload, and the payload

lies within the combined loading capacity of the robots.
The Cartesian coordinate frames shown in Figure 2

are defined as follows:

{FI} is the inertial reference frame.

{Fp} is the frame fixed at the payload's center-of-
mass.
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Figure 1: A Multi-Robot System

{Fb,} is the frame fixed to the base of the ith robot.

{F¢,} is the frame attached to the ith end-effector
at the contact point Ci.

According to Chasle's theorem [22] from elemen-
tary mechanics, the motion of a rigid body in world
space can decomposed into a translation plus a rota-

tion. This is referred to as a rigid motion by Spong
and Vidyasagar [27]. Six parameters are required to
describe the position and orientation of the rigid body.

At the contact point Ci (see Figure 2),

and

= (2)

where

di is the vector that locates the origin of {F,,} rela-
tive to {FI},

ci is the vector that locates the origin of {F¢.} rela-

tive to {Fp},
z0 = [z0=, z w, zo,] r is a vector in {F/} locating the

mass-center of the payload,
wo = [¢,'oy,wot,, wor]r is the angular velocity vector of

{Fp} in terms of the yaw, pitch and roll rates,
we, is the angular velocity of {F,,}, and

R_ is the rotation matrix which maps ci, measured
in frame {Fp}, to the reference frame {F/}.

In much of the literature, it is implicitly assumed

that P_ = E 3 E R3x3, a unit matrix. This is true if

Figure 2: Coordinate Frames

the frames {Fp} and {FI} have the same orientation.
However, since Rp/ depends on ¢0 = [¢0_, ¢0p, ¢0_]T,
the yaw, pitch and roll angles of frame {Fp}, respec-
tively, it is generally not true that R/ = E3 as the
payload undergoes rotational motion. Hence, in tlw

following, a time varying R_ is considered. To sirrqAify

notation, R is used to denote R[ in the following.
As can be verified, the matrix R has the property

k = × R, (3)

where

0 --a,'Op wOT. ]
¢dO× -- wOp 0 --WOy •

--¢_Or wOy 0

Differentiating (1) and noting that di and ci are con-
stant yields

= zo +_o x Rc_. (4)

Since w0 x Rci = -(Rc_)xw0, (2) and (4) can be written
as

o[ 0]--- .S' i

_0

(5)

Ei
m
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where

In the task space, the position and orientation of the

ith end-effector can be represented as

P, = [_,_,,C7
= [z_i.,*._., zoo., _,,, _oip,¢.i.1 r (7)

where ffel is composed of the yaw, pitch and roll angles

representing the orientation of the ith end-effector with

respect to {F! }. In joint space Pi can be expressed as

Pi = Pi(qi), (8)

where qi E R s is the generalized joint displacement of

the ith robot and Pi(.): R 6 --. R 6 represents its forward

kinematics. Therefore,

/_i .T "T T= [Xe,, _ei]

-- OPi(qi) qi (9)
Oqi "

Since

_o,= ro,(_°,,,¢o,,.¢o,.11_.o,, , (101
L¢oi,

where

T_, (.) = cos _iv cos ¢cip sin ¢_i_ , (11)

0 - sin ¢oip

then using (5), (9) and (10) yields

where

[E03 0 ] 0Pi(q,)(13)

is the generalized Jacobian matrix of robot i. It is as-

sumed in the following that each robot works in a non-

singular region. Thus the inverse of Ji exists.

Considering all the robots that act on the payload,

(12) can be expressed compactly as

J/I=S[ _°]w0' (14)

where

3 _z blockdiag{Yl,J2,...,Ja} E R 6d×sd,

s _- [_ sT. ..sT]T_ n_,
and

Aq = lit q_.q_'l Tz n_

Since the forces {f°_,f¢2,...,f¢a} and moments

{n_x, n°_,..., n_d} act on the load, the equivalent force

and moment applied at the mass-center are

fo = f°,+ f°,-.b...-.Ff°. (15)

and

no = no, + no, +... + n°, + (Rc_) x L,

+ (n_) x L, +... + (eCd) x L,, (16)

respectively. In matrix form, (15) and (16) become

no = (Rct)x Ez Ft+ (Re2)x E3 F2

+"'+ (Red)× t5 Fd

-- W_F_ + W_F_ + ... + WeFd

g WF, (]7)

where

v_

W

and

F

= , W_= (Rc_)x Ez '
L he*

a [W_ W_...Wdl_R °x_,

Concerning the matrices W and S, the following prop-
erties hold.

Property 2.1

(1) S and W are full rank, i.e., rank(W) = rank(S) =
6.

(2) Both Si and Wi are nonsingular, i = 1, 2,..., d.

(3) s r = w.
The proof is similar to that given by Song and Anderson

[241.

2.2 Motion Equation

Suppose that the mass and the inertia of the payload
is rn and I0, respectively. With the action of f0 and n0`

the payload undergoes a rigid motion in the world space

as described by

fo = m_,o + mg (18)

and

no = RIoRT&o +wo x RIoRTwo, (19)

where g _ R 3 is the gravity vector. In view of (17)-

(19),
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where

and

0 ]:D1 = " t_IoRT ,

[x o ]:D2 = _o x RIoR T (21)

[:]
The reactive forces and moments of the payload

appearing at the i th end-effector are represented as

Frea_t,. Under the assumption of rigid grasping at the

contact point,

F_,oa, = -Fi, (23)

which causes the joint reaction torques

rF ....,, - jT(q)Fr,ac, i

= -J?(q,)r,. (24)

So for each robot it follows that

Hiqi + Ci_li + Gi = rl + rr .... ,, number (25)

= r,-jTF,, i=l,2,...,d, (26)

where, for the ith robot, Hi is the inertia matrix, Ciqi

is the vector of centrifugal and Corolis forces, Gi is the

vector of gravitational forces and ri is the vector of

control torques. Defining

H _ block diag{H1,//2,...Ha} 6 R 6a×6d,

block diag{Cx,C2,...Cd} E R 6dx6d,

[e T 67... GT]_ e R",

C

G

and

T ,I] e R",

the combined form of (25) is

T = H_i+ Cq + G + jTF. (27)

This model can easily be transformed to the task

space. From (14)

cl = J-'S [z°] "_o (28)

Noting that

_o = T0(¢0y,¢0_,¢0_)

_= r0&, (29)

where

To(.)=
[! -sin¢0y cos¢0pcos¢0u]

cos¢o_ cos ¢0p sin ¢0_ ,
0 - sin ¢0p

it follows that

[::]
where

A =

and

AXo, (30)

Notice that det(T0) = -cos 40p. For small changes in

the payioad's orientation ([¢0p[ < _), the matrix A is

invertible. Now by (27) and (29),

such that

_1= J-1SA)(0 (31)

d

_1= J-_SAJ(o + _(3-_SA)}(o. (32)

In view of (20)-(22), (26) and (29)-(31), the com-
bined dynamics of the multi-robot system through the

payload may be written as

wj-TT = (wj-THj-'SA+:DtA)J(o

+ (wj-THd(j-t SA)

wj-Tcj-_SA +_A + D2A) Xo+

+ wj-TG + 7:)3. (33)

It turns out that the combined model is somewhat "ir-

regular" in that the well-known properties applicable to
general robot dynamics do not necessarily hold. That

is;

1. the generalized inertia matrix wj-THj-_SA +

DtA is not symmetric, and

2, the property of skew-symmetry is not valid.

Remark 2.1

The fact that the generalized inertia matrix is not

symmetric positive definite makes it difficult to di-

rectly use the Lyapunov method to verify stabil-

ity. The passivity principle also cannot be directly
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applied because the property of skew-symmetry
does not hold. In the next section, a simple trans-

formation is applied to "regularize" the combined
model.

3 ROBUST CONTROL METHODS

3.1 Control Objective

As previously noted, it is generally difficult to know

the payload's characteristics precisely. For this reason,
it is assumed that the mass m and the inertia matrix I0

of the payload are unknown. The desired path is given

in terms of position and orientation as

L,o ],

L¢oJ'

and

[i]_0
•

The tracking error is expressed as

e = X0 - Xg

L,o-,o'J -

The motion control problem is stated as:

Design the control torque T such that the actuM

path of the payload's mass center (Xo) asymptot-

ically tracks the desired path (Xg) in the face of

unknown payload parameters.

3.2 Model Transformation

Due to the "irregularity" of the model (32), direct
solution to this problem is complicated. In the follow-

ing, a simple transformation is introduced. By observ-

ing the structure of the combined model (32), it is seen

that if both sides are premultiplied by A T, the trans-

formed generalized inertia matrix is symmetric positive
definite. Moreover, this mutiplication also leads to the

property of skew-symmetry. After the transformation,

(32) becomes

[7t0 + 7-/_]J(0 + [Co + Cp]X0 + [go + (Tv] = _, (34)

where

.T" A= ATwj-TT, (35)

7/0 _ A TWJ-THJ-ISA, (36)

7"[p _= ATD1A

= TToroRioRTTo ,

Co = ATwJ-TIt(J-lSA + J-lSA + J-1S,4)

+ ATwj-TcJ-ISA, (38)

Cp a= ArT_l/l + ATD2A

[0 0 ]= 0 TToloroWox RIoRTTo + T_oroRIoRTTo '

(39)

go A-- A TWJ-TG (40)

and

ap a__ ATvs= lmf] " (41)
t"J

For this model the following properties hold.

Theorem 3.1

The transformed model (33) is regular. That is;

(1) 7"/0 + 7/v is symmetric positive definite, and

(2) [7_0 + 7_p] - 21170+ 17p] is skew-symmetric.

Proof:

(1) The first property can be shown easily by using the
fact that

wT=s.

(2) By the definitions of 7/0,7/p,C0 and Cp, it follows
that

[_o + _] - 2[c_+ Co]

= N_+N_+N3+N4+N_, (42)

where

N1 = ATwj-T(H- 2C)J-tSA,

N_ = ATwJ-THJ-1SA- ATwJ-THj-_SA,

Na = ATWj-THj-tSA-- ATwJ-THJ-_SA,

N4 = ArWJ-_HJ-tSA-ATwj-THj-tSA,

and

where

ill" = _(ToT RIoRTTo)

- 2To'r_o x RIoRTTo - 2ToTRIoRTj'o

Property 2.1 ensures that the N, (i = 1,2,3,4) are

skew-symmetric. Furthermore it can be shown that Ns

is also skew-symmetric (see Appendix). Thus the result
follows.
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3.3 Controller Design

Instead of designing control torque T directly, the
transformed input _" is specified first. This approach

allows the use of the regularized model and its proper-
ties, as stated in Theorem 3.1. Section 6 introduces a
method to calculate T from _'.

Robust Control I

To develop the first robust strategy, the decomposi-
tion of the transformed model is performed first, so that
the payload parameters are isolated from the dynamics.
To this end, the following matrices are introduced:

and

E_Z

Ezy -

Eyy _- R

EZ2 "-

"1

R 0
0

FO

R 1
0

"0
0
1

"0
0
0

0
R 0

0

0
0
0

1

0
0

0
0

0

0
1
0

0
0
0

RT,

R T ,

,

0

0

O"

0

0

1

0 RT,

0

0

0 R T,
0

O"
o a T
1

Zyz "- R 0 R T •

1

Therefore the matrix RIoR T can be written as

RIoR T = R|Ioy: Io_y IoYzl R T

LIo.: Io, y Io,,]

= __, Io0 Eq,
a : i=(

due to the symmetry of I0. The transformed model

(33) can now be decomposed as

.r = Uo2o+ Co2o+ _o

[ _(_0+ g) 1 (43)
+ LEL, E;=,M,_l'

where

+ (_o × E,_To+ E,_0)¢0]. (44)

Based on this model, a robust path tracking control
scheme is developed.

The control input (_') is designed as

Uo[2g- (_ + _)_- _] + Co[2g- _]

'_ 1

where fl > 0, A > 0, and K : K T > 0 are design

parameters (affecting stability, speed of response and
disturbance rejection properties) and fn and I0 are com-
puted by

[io.,io_ k.,]
_o= iZo+_o,,_o,,I, (_6)

ulo=, Ion, Io,, j

'_ = I+T,r.,In_+ v' (47)

-_ o_ (48)

e_Tt_ _2

io_, = :-_-_, o_, (50)
I%r_.. I-_o..+ _,'

T -2

_ @_ I6_ (51)
1o. = l_T%_I/o.+ _'

T -3

c$_ ql_ Id_ z (52)
/o,, = l,t,T,+,,,.,fro,. +

and
T -2

io. = _,I,+.,I0. (53)
I¢T,£,+,, l-to+++ _"

In (44)-(52), r_ and ]0q are the upper bounds of m
and I0i_, respectively,

'+,,,,, = ig - (;_+ _)e_- )_Z_+ g (54)

+'i = TT{EijTo[_bg - (A + 13)_ - Aft++]

+ {,_o× E,¢To+ E_;'o](,_g- A_)} (65)

@_ = g_+fle_, i=1,2, (56)

+ = [¢T,+T]T (5?)

and v > 0 is a design variable that satisfies

' _(_)d_< Cg_< oo. (58)

Robust Control II
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For brevity, let

Zl = 20d - (_ + _)_ - _E,
z_ = *g-'_-

and

L = 7tpZ_+CpZ_+_p.

The control torque is specified by

= 7toZ1 + CoZ2 + _o - K¢ + Ua (59)

and

<I,_2

uo = 11¢11,7+ _'

where 7/is defined by

(60)

IIn_llllZ_ll+ IIC_,llll&ll+ IIGpll
__ o.llZll + ,_l12ollllZ_ll+ _3

A (61)-- r].

In (61), the _i represent upper bounds on the model

norms.

The proposed control strategies lead to the following
results.

Theorem 3.2

Consider the multi-robot dynamics (33) in which

the payload parameters m and I0 are unknown

a priori. If the control input 5" is designed as in

(44)-(57), the payload then asymptotically tracks

the given position and orientation, i.e., X0 --* X0 d
and X0 -, 2_ as t --*oo.

Theorem 3.3

Given the conditions stated in Theorem 3.2, if the

control input _ is specified as in (58) and (59),

then stable path tracking of payload is ensured.

4 STABILITY

Stability can be proven by the following result (see

[25] for more detail). Consider a dynamical system

_((,_) with ( E /_ being the system state. Defining

the generalized energy function of the system as

E(6) = ffK6, (62)

where K 6_ R "xn is a symmetric positive definite ma-

trix, leads to the following result.

Theorem 4.1

Let JA be the integration of the generalized en-

ergy function E(_) over the time interval [0,t],

i.e., JA = f: E(()dr. Suppose ( is uniformly con-
tinuous. If Jx _< Co2 < co for all t E [0, co), then

the system is asymptotically stable, i.e., ( ---* 0 as
t ---_ OO.

This result can be shown by using Barbalat's Lemma

[20](see [25]for details).
The interpretation of the above theorem is that the

system must be stable if the accumulation of the sys-
tem's energy over a time interval of infinite length is

finite. One advantage to this approach is that it is

fairly easy to choose a suitable energy function. (An-

other advantage is discussed later.) In the following,
this result is used to prove the tracking stability of the

proposed strategies.

Proof of Theorem 3.2:

Note that if the control input in (33) is designed as

in (44), the closed-loop system dynamics is given by

K¢ = -(Uo + %)(4 + _) - (Co+ G)_

$----

To simplify notation in the following, let H* = 7'/o +

7/p and C* = Co + Cp. As can be seen, there exist
several generalized energy functions for this problem.

For example

Ex(&) -- CTK&,

E2(_,O) = _&TH'& (VA > 0)

or

Ea(A,¢) = CTK¢+ AOTH*¢ (VA>0).

In the following only Ex(¢) is considered. Clearly

JA j_o |= El(¢)dr

/o'= #T KCdr

' /o'__. t_VH*(_ + A(I))dr - _Tc'dPdr

+/'(e. - m)OTl gtmdr

+ (Ioq - Ioq)¢T _lid dr.

Noting that H* is symmetric positive definite, it can
be shown that

A CTH'¢dr>O (VA>O)
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and

CTH°_dr >_- _TH°& k=o-_

Using these relations yields the inequality

¢bT H" _dr.

JA <_

ira: j=i JO

-I-l fo'd_T(_I" - 2C'),d.r (63)

where C021 = _¢TH*_ I*=0. Due to the property of

skew-symmetry, _ ¢T ( _I* -- 2C* )_dr = 0. Employing

this and the bounds on m and I0, (6_ becomes

I'

I' I'

+ __, i_jl+r_+old_. (64)
I-----## +

Inserting the algorithms (46)-(52) into (63) and con-

ducting a little manipulation yields

JA ' I't'_r+"'lmu d_< c°2'+ l¢T'i',,,+Ir+',.+ +,

++__+j__.+Jo' l<I>"+'i'/lT°i'/u dr_ _ l'+'++,.,+Iio+_+ +

]: "£I'< co+t+ ,,6+"+ _ +,,d,-.
i=:r j---i

Since v satisfies (51),

J_ < c& + ?c& < oo,

which implies that @ _ L_. Furthermore, by making
use of the same argument as in Song and Middleton

[26], it can be shown that @ _ Loo and _i, _ Lo_. Hence

is uniformly continuous• By Theorem 4.1, • --+ 0 as

t --* o_. Since • = _+Ae, the result stated in Theorem
3.2 is obtained.

Proof of Theorem 3.3

In this case, the control law (58)-(60) yields the,

closed-loop dynamics

(no+ n_)(++ ,x+)+ (co+ c_)¢= -K+ + Uo- L,

where L is defined as before. Following the same pro-

cedure as in the proof of Theorem 3.2, it is seen that

I'JA = _T K _dr

I'<_ cg_ + +T[u_ -- L]e_

i' I'< c_, + +rU.d_" + II+llllLlld+'.

Substituting for U, from (59) and noting that IILII_< ,_

(see (60)), yields

JA < cg_- d,-+ II't'll,Td+-
- I1¢11'7+ "

' I1+11o,,= Co_t + dr
I1+11,7+.

/o'< Cg_ + vdr.

Since u satisfies (57), JA is bounded and the result
follows from Theorem 4.1.

Remark 4.1

It is seen that the design variable _ plays an im-

portant role in the above control strategies. It is

required in both that _ be integrable. As can be

verified,

1 + tm)Pe_V_. '
u = _v_(1

where v_ > 0 and v: > 0, satisfies such a require-

ment if m, p and n are chosen properly.

Remark 4.2

It is worth mentioning that, in addition to prov-

ing stability, JA also provides a relative measure

of the tracking performance in terms of transient

and steady-state errors. This is because ¢ is a
filtered tracking error, and the quantity _T h_ is

a weighted version of the squared error Its in-

tegral over [t0,t] represents the accumulation of

the weighted, squared tracking error within the

interval. The smaller this integral, the better the

tracking performance. (See [25] for a thorough

investigation of this point.)
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5 SIMPLIFIED STRATEGY

In strategy II, the quan.tity _has to be determined.
This is accomplished by estimating cq, _2 and a3.

Knowing the bounds on m and I0 and the formulations

of _/p, Cp and 6p makes it possible to obtain these quan-
tities. To eliminate this tedious procedure, an alternate

control strategy is proposed.

Theorem 5.1

Let the control input be defined as

3:= 7"loZ,+ CoZ2 + 60 - K_ + U_, (65)

with Z] and Z2 defined as before and

_'} (66)

where

O= &tllZ, ll + &=llRollllZ=ll+ a=. (67)

If the &i are estimated on-line via

//(_I -_ al(O) "1t" Cl II_llllz'lla=,

I'S2 = S2(O) Jr" C2 11011112ollllZqld_,

and

fs3 = s=(0)+cs II_lldr,

where &i(0) is the initial value of &i and the c_

are positive constants, then stable path tracking
is achieved.

Proof:

Applying this strategy to (33) leads to the following.

JA _- 0 T KOdr

I'< cg, + tl011(,- O)d,-

I'= cg_+ (_, - Sl)ll¢llllz, lld_

+ ['(_ - &2)ll@lHlXollllZ2[Idr

f+ (_3 - e,_)llelld,-. (6s)

To show the boundedne_ of J_, the following rela-
tion is needed,

t r 1 2

Substituting for the &i in (67) and using the above

relation yields

]A < |co=_+ (,_, - a_(o)) II_llllZ, IId_

- -_- II_'lll[&lld,"

f+(_2 -s2(0)) ll¢llll201111Z211dr

- _- II¢ll[IkollllZ=llar

Z'+ (_a- a3(0)) II_lld_

]'2 e[Idr

By completing the square,

_<
(Oil -- _1(0)) 2 (_2- a2(0))2

C_l + +
2c, 2c2

+ (_ - _(o))_ _ c0_ < _.
2c3

The result follows using the same argument as before.

Remark 5.1

The primary advantage of this strategy is that

one does not need to calculate the design param-
eters al, a2, and an. Instead, these variables are

updated on-line using simple algorithms.

6 TASK DISTRIBUTION

What is actually needed to guarantee the path track-

ing of the multi-robot/payload system is the vector of

control torques for each robot (the elements of T). For-

tunately, since W is full rank (Property 2.1), there ex-

ists a matrix,

W + "- wT(wwT) -1 e t_ d×6,

such that the total control torque T becomes

T = JTFend, (69)

where

Fend -- W+A-T.T "+ Fi

_= Fp + F/.

In these equations, Fp is the force causing the motion

of the payload (_" is computed by (44), (58) and (59),

' i
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or(64)-(66))andr_ _ NullSpace(W)repre_nts
internalforcevector.A wellknown formulationforFI,

Ft = (E6d- W_W)_ V_ _ Rsd, (70)

has been the basis for much work dealing with load dis-

tribution. However, it is noted in [34] that, although

Ft in (69) satisfies WF# = 0, it is an inadequate defi-

nition for internal force from a physical point of view.

A recent work [31] also pointed out that (69) does not

completely define the internal loading.

Furthermore, in practicalapplicationsforce con-

straintsare generally imposed on the manipulating

forces/moments at the grasp pointsdue to the limited

controlenergy,i.e.,

IF_,_di(i)l = IFp,(i) + Fl,(i)l _ #j(i),

j=l,...,d, i=1,...,6, (71)

where Fe,_dj (i), Fp,(i) and Fi,(i) are the i th elements
of the jth partitions of F_,d, Fp and FI, respectively,

and #j (i) are given positive numbers. Such constraints
are also necessary to achieve fine manipulation.

So an interesting problem is how to distribute the

task among the robots such that the force constraints

(70) and WFI = 0 are satisfied. The following strategy

provides a solution to this problem.
First let

{the set of robots working on the task}

{the set of robots needing help}, and

{the set of robots with spare capacity.}

Assume i21 --_2 {_ f_a and f/u i_ {0} and _a _ {0}.

This impliesthat each robot eitherneeds help or has

spare capacity,at leastone robot needs help and at

leastone robot can provide help. Itisfurtherassumed

that the number of the robots with spare capacityisr

and thoserobots are ableto providethe requiredforces.

The strategybasicallyconsistsoftwo steps.Step i

checkswhich robots need help and step 2 arranges the

help. The first step uses Fpi(i ) as a criterion. That is,

• STEP la: lf[Fei(i)[ )_ pj(i), then j 6 fl_.

• STEP lb: The FI_ are adjusted so as to guarantee
the force constraints (70). This is achieved by choosing

F1, as

Fb(i ) a__ F_j(i)

f ttj (i) - Fp, (i),

l -Uj (i) - Fp# (i),

if Fpj(i) > uj(i);
if Fp,(i) _<-m (i).

(72)

The second step is motivated by the following ob-
servations. First it is noted that in order to make the

payload asymptotically track the desired path, the to-

tal control force _ must be equivalently generated by

the total joint torque. Thus T should satisfy,

ATw,]-TT = ATWFend = jr'. (73)

With FI, specified as in (71), the condition (72) may
not be satisfied. Furthermore, (71) may also cause the

null space property of F_ to be violated. Hence we need
to seek help from the other robots. Clearly such help

should completely compensate the load that the robot

j (j _ ft2) cannot supply. This is ensured if the payload

lies within the loading capacity of the robots (other-

wise, more robots should be assigned to the task). Once

Ft_ (j e 12_) is specified according to (71), Ft_ (k e f23)
must be chosen such that the null space condition holds.

This is ensured if F_, is determined by

k_

mr,,=- (74)
k=k t all jEfl_

where F]# is given by (71).
In helping robot j (j E f22), there is no constraint

on how much effort each robot in 123 should provide.

Hence one generally has infinite choices for F]_, as long

as the resultant Ft lies in the null space of W But

what we are interested in is an "optimal" choice for the

Ft_. This brings us to step 2.

• STEP 2: Determine the FI_ (i), i = l,..., 6, k _ f23,

such that, under the constraints (70) and (73), the co,st
fun c tion,

1 k. 6
J¢(F_,)--" _ E EP_(i)F_ (i) = 1 T7X PX, (75)

k-_kt i=l

is minimized. In this equation, p_(i) > 0 is a weighting

parameter,x = [F_, _ ...FL : e _ _nd P =

diag[p_(i)] _ R srxer is a symmetric, positive-definite
matrix.

By denoting

r=- _ W_F;, eR _,
all jE_

the constraints (73) can be rewritten as

Qx = r, (76)

where Q = [W_, W_... Wt,] _ R sxs_. Therefore,
the optimal task distribution problem under force con-
straints becomes

Jc()) = 1xT pxminimize:

subject to: QX = r.
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The Lagrangian multiplier method is used to solve

this problem. Using vi, i = 1,...,6 as the Lagrange
multipliers, the Lagrangiat! function is

6

L(x,_) = Jo(x)+ Y:_,[(Qx), - r,]
i=l

= _xTpx + vT[Qx-- r].
_b

The necessary conditions for the optimal solution can
be found from

OL(x,v)

OX
= 0[½ xTPX] +cg[vTQx]

Ox Ox

= Px+QTv=o

and

Thus

OL(x,_)
Ov - Qx - r = o.

and

v* = - [Qp-1QT]-*F (77)

x" = p-*QT [Qp-tQT] -1 F. (78)

Correspondingly the minimium cost function is

:¢o,,=., = L(X,,V, ) = _FT [Qp-1QT]-* r. (79)

Notice that the inverse of the matrix [Qp-IQT] should

exist in order to obtain (76), (77) and (78). Since this is

an important issue concerning the existence of the opti-

mal solution, a rigorous proof of the invertibility of the
matrix Qp-tQT is worth investigating. For simplicity,

let P = E6r, a unit matrix. In view of the definition of

Q, it is seen that

QQT=Wk, W_ +Wk_W_ +...+Wk, WT. (80)

Since

where

0]Bi E3 '

then

Therefore

[ _E_
QQT = k,

[Ei=k, Bi

Si = (R_,) ×,

B_

_:_, _,_ 1
rE,+E_:_,B,sT.I

The Schur formula,

gives

det(O0T) = ,'det[_Es+ A],
where

A: __ B,B,_-- B, B .
r

i=ki Li=ki ki=kt

With a little msnipulation, it can be shown that

kr

= _ B,B,_
i=k,

i=kt ]=i+l

This relation reduces A to

A .._

kr

(.-l) _ B,BT
r

i=ki

k.-i k.

_! Z] Z: (B,BT+ B_Bh.
i--k,/=i+1

Also noting that

kr kr-, kr

(,.- 1)]E B,Br= _ E: (B,_r+,%_')
i=k, i=ki j=i+l

Vr >_ 1, it can be shown that

1 k,_, k,

A= ; _ _ (s,- B,.)(_,- B_)_,
i=k,j:i+l

which shows that A is at least positive semi-definite

Therefore rEz+A is positive definite and QQT is invert-

ible. The same conclusion can be drawn for a general

diagonal P with more effort. Based on this discussion,

following results can be claimed.

Theorem 6.1

If T is generated by

T = JTW+A-T,_ + JTFI, (81)

where _" is from (44), (58) and (59), or (64)-(66),

Fz_ (j G fl_) is specified by (71) and Ft_ (k 6 f_3)
is computed by (77), then;

i
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(1) asymptotically stable path tracking is ensured,

(2) internal forces are non-zero at the contact
points, . . -

(3) force constraints are guaranteed and

(4) optimal sharing of the task is achieved.

Result 1 is true because such a T leads to the equiv-
alent control force _'. Results 2, 3 and 4 hold because

the choice for Fz satisfies (71), (73) and (77). The prop-
erty of non-zero internal force is of particular interest

in many advanced applications where no slippage and

effective manipulation are required. It is seen that with

this strategy, whenever IFpil > pj(i), help from other
robots is provided. Thus the given task is shared in a

colleague-like manner in the sense that robots help each

other when necessary. Furthermore, with Fzk (k E Cta)

determined by (77), the task is shared among the robots

in f_3 optimally in that the cost function (74) is mini-
mized.

7 DESIGN EXAMPLE

The case of three robots (each with three joints)

transfering a point-mass payload is used to demon-

strated the application of the strategy. Note that no ro-
tations are involved in this case. Assume that the force

constraints at the grasp point for robot i (i = 1,2, 3)

in the z, y and z directions are given in Newtons as

and

IF..d,(x)l _< 120,

IP.-d,(Y)l _< 15o

jF_,d,(Z)J <_ 150.

Since the payload is a point-mass with no rotation, A -

E3 and W - [E3 E3 E3]. Hence

E3 , Fp-gW+=3 E3

where .F" • R 3 is computed by (44), (58) and (59), or

(64)-(66).
Suppose that at time tz,

and

IFP,(z)(tl)l >_ 120,
IFp,(_)(h)l _> 15o

IF,,.,(z)(h)l _> 150.

Then robot I needs help and the Fz,(z/y/z) are spec-
ified as

120 - atY(z) if _Y(x) _ 120;FT,(z) = -120- ½Y(z) if _'(z) _< -120,

j" 150- ½_(y) if ½_'(y) > 150;
F_(y) = .[-150- ½.T(y) if _.F'(y) < -150

and

, _ _'150-½_(z) if_, ,,_='T(z)>-150;F;,(z)
[ -150 - 3Y'(z) if _._'(z) < -150.

To optimally help robot I, choose P = ¼E¢. By (77)
the task can be optimally shared if

1F* 1
F;,=-_ z, and F;_=-_F;,,

and the minmium cost function is

Jo.,,,.., = -_ F; T_;,.

It can he verified that;

(1) the force constraints are satisfied,

(2) the null space property holds,

WFI = F_,+F_+F_,

F* 1 . 1 .

= 0

and

(3) the equivalent control force _ is guaranteed since

Fp, +F,,1ATW(Fp + FI) - ET[E3E3Ea] Fp, -t- F,, I

Fp_ + F_J

= (Fp,+Fp,+Fp_)
+ (F], + Fj; + El,)

1 _) o= (½_+ g_+ +
-- ,_'.

8 CONCLUSIONS

The path tracking control problem of a multi-robot

system handling an unknown rigid payload is studied.

Based on the combined dynamic model which reflects

payload effects, three robust path tracking control al-

gorithms are constructed. The payload can be of any

shape as long as its center-of-mass is known. As can

be seen, the strategies do not require wrist force sen-
sots, but the quantity {(z0, @0), (_0, ¢0)} is required.

Also the matrix Si, which depends on the location and

orientation of the i th end-effector, is needed. A vision

system would be appropriate to obtain this informa-
tion.

Notice that in this work the manipulation force and

moment constraints are explicitly considered. In some

applications, it is desirable to limit the stress in the
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object while manipulating it. This imposes a constraint
on the internal forces of the form,

F,_(i) E a_(i), (82)

where Aj(i) describes the region in which the i th ele-
ment of the internal force at contact point j should lie.

This region is specified as

(1)= [.f (i), of (i)]

where r/7(i ) and r/f(i) are given constants.
A similar strategy can be developed to satisfy this

requirement. It is natural to ask if one can choose a

value for Fti(i ) (j E f_2) such that both (70) and (81)
are satisfied. The answer to this question is positive if

the constraints imposed in (70) and (81) do not lead to

conflicting choices for FI, (i). Otherwise, the answer is
negative.

In developing the control strategy, it is assumed that
each robot firmly grasps the payload through the con-

tact point. For some advanced applications, flexible

grasping may be required. Hence extension of the re-

suits to the soft grasp case would be an interesting fu-
ture research topic. Another issue worth investigating

is the effects of load-transitions during "pick-up" and

"drop-off" phases.

APPENDIX

Skew Symmetry of N5

It is sufficient to show that Af is skew-symmetrlc. In
fact since

_0× R=/_,

it follows that

Af -- d (ToT RIoRTTo ) -2ToTo:o x RIoRTTo

_ zrTRIoRTi O
-- (ff RIoRTTo - ToRIoRTTo)

+ ( nI0/ rT0 -  i IoRTTo).

It can be verified that

Af+Hr = 0,

which implies the skew-symmetry of Ns.
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